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The development of catalytic methods for the synthesis of
nonracemic epoxides has been a long standing goal in asym-
metric synthesis.1 Most attention has focused on the asymmetric
oxidation of alkenes, and good enantioselectivities are now
beginning to emerge for an increasing range of substrates.2

Direct epoxidation of carbonyl compounds using sulfur ylides3

has also been studied, but the process usually requires stoichio-
metric amounts of sulfides/sulfur ylides4 and often only gives
moderate enantioselectivities.5 We recently described acatalytic
process for epoxidation involving sulfur ylides which overcomes
the former limitation (Scheme 1) and also described the use of
sulfide 1 for the preparation of nonracemic epoxides.5g,6 The
levels of enantioselectivity were poor, and in this communication
we now describe significant improvements in asymmetric
induction using easily accessible chiral sulfides.

In our first attempts at improving enantioselectivity, we
studied a more substituted analogue of1, as it had been
previously shown by Durst that the benzyl sulfur ylide derived
from sulfide 2 reacted with aldehydes to give epoxides with
very high enantioselectivity.5k,7 Sulfide 2 was prepared and
tested in the catalytic cycle, but no epoxide was obtained, only
stilbene.8 However, using Cu(acac)2

9 in place of Rh2(OAc)4
and employing a stoichiometric amount of the Durst sulfide2,
we were delighted to find that epoxidation was the dominant
process again (Scheme 2). The significant difference in epoxide
yield using Cu(acac)2 and Rh2(OAc)4 is a reflection of the
difference in rate of reaction of the metal carbenoid with either
the sulfide (to give ylide) or diazocompound (to give stilbene).
Evidently, the copper carbenoid is less sterically hindered than
the rhodium carbenoid and can therefore react with relatively
hindered sulfides.10 However, the enantiomeric excess was still
only moderate,11 so new chiral sulfides were sought. A positive
feature of the Durst sulfide is that only one of the two
diastereomeric lone pairs reacts with the metallocarbene, result-
ing in the formation of a single sulfur ylide. In the design of
alternative sulfides, it was deemed important to incorporate this
feature to avoid formation of diastereomeric sulfur ylides which
could react with opposite enantioselectivity.5f A disadvantage
of the Durst sulfide is that because of its lengthy synthesis it is
difficult to tune the steric and/or electronic environment of the
sulfur to maximize enantioselectivity. Sulfide3 was therefore
designed, as it possesses only one reactive sulfur lone pair, and,
being a thioacetal, the R group is readily amenable to “tuning”.
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superimposable. Durst’s ee’s were determined by NMR using Eu shift
reagents.
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Sulfides3a-g were prepared as shown in Scheme 312 (3b
shown; see supporting information for3a, 3c-g) and incorpo-
rated in the catalytic cycle with benzaldehyde (Table 1). It was
found that high enantioselectivity could be obtained provided
that the thioacetal was substituted at the 2 position (entries 2-7).
Sterically hindered (entries 2, 3, 4, and 5) or electron-
withdrawing groups (entries 6 and 7) resulted in lower yields
in the epoxidation process. The optimum sulfide in terms of
yield (73%) and enantioselectivity (93%) was3b (entry 2).13,14
This is the highest enantioselectiVity yet reported for trans-
stilbene oxide formation by any method and uses an easily
accessible sulfide, employed in only catalytic quantities.Sulfide
3b was tested with a range of aldehydes, and the results are
summarized in Table 2. It was found that high enantioselectivity
was maintained with both aromatic and aliphatic aldehydes.
Aliphatic aldehydes gave lower yields compared to aromatic

aldehydes and gave a mixture oftransandcisepoxides,whereas
aromatic aldehydes only gaVe trans epoxides.This contrasts
with sulfides1 and2 in which mixtures oftrans:cis epoxides
were obtained with benzaldehyde.5k

Our mechanistic rationale for the high asymmetric induction
observed is depicted in Scheme 4. The ylide can adopt two
conformations4a or 4b, but 4a suffers from 1,3 diaxial
interactions of the phenyl group with the axial H’s.4b may
also suffer from 1,3 interactions between the phenyl and methyl
groups, but as the carbon-bearing ylide is likely to be between
sp2 and sp3 hybridized, this interaction may be smaller than that
encountered in4a. The aldehyde can attack either face of ylide
4b, but the equatorial methyl group hindersSi face attack and
henceReface attack is preferred. [In the absence of this group,
both faces of the ylide can be attacked, resulting in much
reduced enantioselectivity (Table 1, entry 1)]. Since thetrans
epoxide is obtained, this dictates the orientation of the aldehyde
as it approaches theRe face of the ylide (assuming an end-on
approach rather than a [2+ 2] addition,15 Scheme 4) and gives
the (R,R)-epoxide.
In summary, we have discovered new conditions under which

hindered sulfides can participate in our catalytic cycle for direct
epoxidation of aldehydes and found simple, tuneable, chiral
sulfides which give very high levels of asymmetric induction.
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Table 1. Yields, Enantioselectivities, and Ratios of Stilbene Oxide
Formed from Benzaldehyde Using 0.2 eq of Sulfides3a-g

entry sulfide yield % ee %a trans: cis

1 3a 83 41 (R,R)b >98:2
2 3b 73 93 (R,R)b >98:2
3 3c 45 93 (R,R)b >98:2
4 3d 0
5 3e 56 88 (R,R)b >98:2
6 3f 43 83 (R,R)b >98:2
7 3g 70 92 (R,R)b >98:2

a Enantiomeric excess determined by chiral HPLC using a Chiralcel
OD column.bAbsolute configuration determined by comparison of [R]D
values with literature values.5b

Table 2. Yields, Enantioselectivities, and Ratios of Epoxides
Formed from Aldehydes Using 0.2 eq of Sulfide3b

entry aldehyde yield % ee %a trans:cis

1 benzaldehyde 73 93 (R,R)b >98:2
2 p-chlorobenzaldehyde 72 92(R,R)b >98:2
3 p-tolualdehyde 64 92(R,R)b >98:2
4 cinnamaldehyde 73 89c >98:2
5 valeraldehyde 35 68c 92:8
6 cyclohexanecarboxaldehyde 32 90c 70:30

a Enantiomeric excess determined by chiral HPLC using a Chiralcel
OD column.bAbsolute configuration determined by comparison of [R]D
values with literature values.5b c Absolute configuration (R,R) assumed
by analogy with entries 1-3.
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