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Direct Asymmetric Epoxidation of Aldehydes Using Scheme 1
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The development of catalytic methods for the synthesis of 1 2
nonracemic epoxides has been a long standing goal in asym- Ph
metric synthesi&. Most attention has focused on the asymmetric Q Cu(acac), A .Ph
oxidation of alkenes, and good enantioselectivities are now s * PhCHN, + PhCHO Ph/A“
beginning to emerge for an increasing range of substfates. 40% yietd
Direct epoxidation of carbonyl compounds using sulfur ylides 2 72% ee

has also been studied, but the process usually requires stoichio-
metric amounts of sulfides/sulfur ylideand often only gives
moderate enantioselectivitiesWe recently describedaatalytic
process for epoxidation involving sulfur ylides which overcomes
the former limitation (Scheme 1) and also described the use o
sulfide 1 for the preparation of nonracemic epoxide$. The
levels of enantioselectivity were poor, and in this communication
we now describe significant improvements in asymmetric

In our first attempts at improving enantioselectivity, we
studied a more substituted analogue If as it had been
fpreviously shown by Durst that the benzyl sulfur ylide derived
from sulfide 2 reacted with aldehydes to give epoxides with
very high enantioselectivitfk? Sulfide 2 was prepared and
tested in the catalytic cycle, but no epoxide was obtained, only

induction using easily accessible chiral sulfides. stilbene? However, using Cu'(acag?)in place of RR(OAC),
and employing a stoichiometric amount of the Durst sulfde
T University of Sheffield. _ we were delighted to find that epoxidation was the dominant
* Zeneca Manufacturing Partnership. process again (Scheme 2). The significant difference in epoxide
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to give epoxide. However, the yields of the epoxides obtained were very
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Table 1. Yields, Enantioselectivities, and Ratios of Stilbene Oxide
Formed from Benzaldehyde Using 0.2 eq of Sulfi@as-g

Cu(acac
+ PhCHN, + PhCHO _Culacacly ALPh
o Ph
S—/L-Me

entry sulfide yield % ee % trans: cis

1 3a 83 41 RRP >08:2
2 3b 73 93 RR)P >08:2
3 3c 45 93 RRP >08:2
4 3d 0

5 3e 56 88 RR)P >08:2
6 3f 43 83 RR)P >08:2
7 39 70 92 RRP >08:2

a Enantiomeric excess determined by chiral HPLC using a Chiralcel
OD column.? Absolute configuration determined by comparisonogf[
values with literature values.

Sulfides3a—g were prepared as shown in Schenié 3b
shown; see supporting information f8a, 3c—-g) and incorpo-
rated in the catalytic cycle with benzaldehyde (Table 1). It was
found that high enantioselectivity could be obtained provided
that the thioacetal was substituted at the 2 position (entrig3.2
Sterically hindered (entries 2, 3, 4, and 5) or electron-
withdrawing groups (entries 6 and 7) resulted in lower yields
in the epoxidation process. The optimum sulfide in terms of
yield (73%) and enantioselectivity (93%) wak (entry 2)13.14
This is the highest enantioselagty yet reported for trans-

stilbene oxide formation by any method and uses an easily

accessible sulfide, employed in only catalytic quantiti8slfide

3b was tested with a range of aldehydes, and the results are

summarized in Table 2. It was found that high enantioselectivity
was maintained with both aromatic and aliphatic aldehydes.
Aliphatic aldehydes gave lower yields compared to aromatic

(12) (a) Eliel, E. L.; Frazee, W. J. Org. Chem1979 44, 3598-3599.
(b) de Lucchi, O.; Lucchini, V.; Marchioro, C.; Valle, G.; Modena, &.
Org. Chem.1986 51, 1457.

(13) (a) Using stoichiometric amounts of sulfi@e, high yield (90%)
and high enantioselectivity (93% ee) were obtained with benzaldehyde, bu
with 0.2 equiv of sulfide a slightly lower yield (73%) but the same
enantioselectivity was obtained. To obtain reasonable yields when using
substoichiometric amounts of sulfide, it was found necessary to conduct
reactions at the same effective concentration of sulfide. This presumably
resulted in similar rates of ylide formation and reaction with the aldehyde

and therefore allowed the sulfide to be returned and recycled at the same Supporting Information Available:

rate as that of the stoichiometric process.
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Table 2. Yields, Enantioselectivities, and Ratios of Epoxides
Formed from Aldehydes Using 0.2 eq of Sulfi@b

entry aldehyde yield% ee® transcis
1  benzaldehyde 73 IRRP >98:2
2 p-chlorobenzaldehyde 72 RR°  >982
3  p-tolualdehyde 64 9K RP >98:2
4 cinnamaldehyde 73 89 >08:2
5 valeraldehyde 35 68 92:8
6 cyclohexanecarboxaldehyde 32 °90 70:30

a Enantiomeric excess determined by chiral HPLC using a Chiralcel
OD column. Absolute configuration determined by comparisonagf[
values with literature value. ¢ Absolute configurationR,R) assumed

by analogy with entries 43.
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aldehydes and gave a mixturetainsandcis epoxideswhereas
aromatic aldehydes only ga trans epoxides.This contrasts
with sulfides1 and2 in which mixtures oftranscis epoxides
were obtained with benzaldehyéte.

Our mechanistic rationale for the high asymmetric induction
observed is depicted in Scheme 4. The ylide can adopt two
conformations4a or 4b, but 4a suffers from 1,3 diaxial
interactions of the phenyl group with the axial H'db may
also suffer from 1,3 interactions between the phenyl and methyl
groups, but as the carbon-bearing ylide is likely to be between
sp? and sp hybridized, this interaction may be smaller than that
encountered ida. The aldehyde can attack either face of ylide
4b, but the equatorial methyl group hindessface attack and
henceReface attack is preferred. [In the absence of this group,
both faces of the ylide can be attacked, resulting in much
reduced enantioselectivity (Table 1, entry 1)]. Sincetthes
epoxide is obtained, this dictates the orientation of the aldehyde
as it approaches theeface of the ylide (assuming an end-on
approach rather than a {2 2] addition!®> Scheme 4) and gives
the RR)-epoxide.

In summary, we have discovered new conditions under which
hindered sulfides can participate in our catalytic cycle for direct
epoxidation of aldehydes and found simple, tuneable, chiral

¢ Sulfides which give very high levels of asymmetric induction.
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Method for the preparation
and analytical data of thioacetaBa—g, method for the asymmetric

(14) While commercial Cu(acagjvorked well with sulfide2, no epoxide
was obtained with sulfid8b. However, using Cu(acagprepared by adding
saturated sodium carbonate to a suspension of copper oxide and acetylac
etone in HO (see: Bryant B. E.; Fernelius W. Gorg. Synth.1957, 5,
115), the yields reported in Tables 1 and 2 were obtained. The following
general procedure was used in all of the reactions: To a stirred solution of JA961144+
sulfide 3b (0.2 mmol), Cu(acag)(0.05 mmol), and the aldehyde (1 mmol)
in dichloromethane (0.5 mL) under nitrogen was added a solution of (15) It has not been established whether sulfur ylide additions to carbonyl
phenyldiazomethane (1.5 mmol in 0.5 mL of dichloromethane) at room compounds occur via a [2 2] cycloaddition analogous to the phosphorus
temperature over a period 8 h using a syringe pump. After the solution  ylide reaction or a head to tail addition. However, most literature examples
was stirred for an additional 1 h, the solvent was remadmegcuoand the use the head to tail addition mode to account for the stereoselectivity
residue was chromatographed on silica gel. observed®

epoxidation process, and assay methods for the product epoxides (7
pages). See any current masthead page for ordering and Internet access
instructions.




